Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Yu Liu¥ and Duan-Jun Xu*

Department of Chemistry, Zhejiang University, People's Republic of China
\# Present address: Department of Chemical Engineering, Shandong Institute of Light Industry, People's Republic of China

Correspondence e-mail: xudj@mail.hz.zj.cn

Key indicators

Single-crystal X-ray study
$T=295 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.004 \AA$
R factor $=0.034$
$w R$ factor $=0.084$
Data-to-parameter ratio $=11.6$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2004 International Union of Crystallography Printed in Great Britain - all rights reserved

catena-Poly[[diaquabis(1 H -benzimidazole- $\kappa \mathrm{N}^{3}$)-nickel(II)]- μ-fumarato- $\left.\kappa^{2} O: O^{\prime}\right]$

The title compound, $\left[\mathrm{Ni}\left(\mu-\mathrm{C}_{4} \mathrm{H}_{2} \mathrm{O}_{4}\right)\left(\mathrm{C}_{7} \mathrm{H}_{6} \mathrm{~N}_{2}\right)_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right]_{n}$, is a one-dimensional polymeric complex bridged by fumarate dianions. The Ni atom lies on one inversion centre and the fumarate on another. The molecular chains are linked by hydrogen bonding. $\pi-\pi$ stacking between parallel benzimidazole rings exists in the crystal structure.

Comment

The aromatic $\pi-\pi$ stacking interaction has been shown to be correlated with electron transfer in some biological systems (Deisenhofer \& Michel, 1989). As part of an investigation of $\pi-\pi$ stacking interactions in metal complexes (Chen et al., 2003), the crystal structure of the title benzimidazole (BZIM) complex of $\mathrm{Ni}^{\mathrm{II}}$, (I), is presented here.

(I)

The title $\mathrm{Ni}^{\mathrm{II}}$ complex is polymeric and displays a similar structure to that of the $\mathrm{Co}^{\mathrm{II}}$ analogue (Liu et al., 2003). The $\mathrm{Ni}^{\mathrm{II}}$ atom in (I) is located on an inversion centre and assumes normal octahedral coordination geometry (Table 1), formed

Figure 1
The coordination environment around the $\mathrm{Ni}^{\mathrm{II}}$ atom in (I), shown with 30% probability displacement ellipsoids. Dashed lines indicate the hydrogen bonding involving the uncoordinated carboxy O2 atom. [Symmetry codes: (i) $-x,-y, 1-z$; (ii) $1-x, 1-y, 2-z$; (iii) $-x$, $1-y, 1-z$; (iv) $1-x, 1-y, 1-z$.]

Received 16 June 2004
Accepted 21 June 2004
Online 26 June 2004

Figure 2
The molecular packing of (I); dashed lines indicate the $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonding between adjacent polymeric chains. [Symmetry code: (ii) $1-x, 1-y, 2-z$.]

Figure 3
The molecular packing of (I); dashed lines indicate the $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonding between adjacent polymeric chains. [Symmetry code: (iii) $-x, 1-y, 1--z$.]
by fumarate anions, BZIM and coordinated water molecules, as shown in Fig. 1. The fumarate anion is located on another inversion centre and the carboxy groups are coplanar with the carbon skeleton, the maximum atomic deviation being 0.035 (2) \AA (for C12). Each carboxy group coordinates in a monodentate fashion to the $\mathrm{Ni}^{\mathrm{II}}$ atom, and the uncoordinated carboxy O atom (O2) links with BZIM and coordinated water molecules via three hydrogen bonds, as shown in Fig. 1 and Table 2.

The fumarate anions bridge neighbouring $\mathrm{Ni}^{\mathrm{II}}$ atoms through both terminal carboxy groups to form polymeric molecular chains, extending along the [110] direction. Adjacent polymeric chains are linked by $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ (Fig. 2) and $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ (Fig. 3) hydrogen bonds to form the threedimensional supramolecular structure.

An overlapped arrangement of BZIM rings of adjacent complex molecules is observed in the crystal structure (Fig. 4). The distance of 3.404 (13) A between neighbouring parallel BZIM rings suggests the existence of $\pi-\pi$ stacking.

Experimental

An aqueous solution (5 ml) containing fumaric acid ($0.12 \mathrm{~g}, 1 \mathrm{mmol}$) and $\mathrm{NaOH}(0.08 \mathrm{~g}, 2 \mathrm{mmol})$ was mixed with an aqueous solution $(5 \mathrm{ml})$ of $\mathrm{NiCl}_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}(0.24 \mathrm{~g}, 1 \mathrm{mmol})$. The mixture was refluxed for 30 min . An ethanol solution (5 ml) of benzimidazole ($0.24 \mathrm{~g}, 2 \mathrm{mmol}$)

Figure 4
$\pi-\pi$ stacking of benzimidazole rings between neighbouring complex molecules. [Symmetry code: (v) $2-x, 1-y, 2-z$.]
was then added to the above mixture and the resulting solution was refluxed for a further 3 h . After cooling to room temperature, the solution was filtered. Single crystals were obtained from the filtrate after two weeks.

Crystal data

$\left[\mathrm{Ni}\left(\mathrm{C}_{4} \mathrm{H}_{2} \mathrm{O}_{4}\right)\left(\mathrm{C}_{7} \mathrm{H}_{6} \mathrm{~N}_{2}\right)_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right]$
$M_{r}=445.07$
Triclinic, $P \overline{1}$
$a=7.0650$ (10) \AA
$b=8.4842(10) \AA$
$c=8.6617$ (9) \AA
$\alpha=98.471(7)^{\circ}$
$\beta=112.685(4)^{\circ}$
$\gamma=103.098(4)^{\circ}$
$V=450.37(10) \AA^{3}$

$$
\begin{aligned}
& Z=1 \\
& D_{x}=1.641 \mathrm{Mg} \mathrm{~m}^{-3} \\
& \text { Mo } K \alpha \text { radiation } \\
& \text { Cell parameters from } 2668 \\
& \quad \text { reflections } \\
& \theta=3.0-26.0^{\circ} \\
& \mu=1.12 \mathrm{~mm}^{-1} \\
& T=295(2) \mathrm{K} \\
& \text { Prism, green } \\
& 0.27 \times 0.14 \times 0.10 \mathrm{~mm}
\end{aligned}
$$

Data collection

Rigaku R-AXIS RAPID diffractometer
ω scans
Absorption correction: multi-scan (ABSCOR; Higashi, 1995) $T_{\text {min }}=0.74, T_{\text {max }}=0.89$
3114 measured reflections

Refinement

Refinement on F^{2}
1616 independent reflections
1511 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.038$
$\theta_{\text {max }}=25.2^{\circ}$
$h=-8 \rightarrow 7$
$k=-10 \rightarrow 10$
$l=-10 \rightarrow 10$

$$
\begin{aligned}
& w=1 /[\sigma^{2}\left(F_{o}{ }^{2}\right)+(0.0476 P)^{2} \\
&+0.3701 P] \\
& \text { where } P=\left(F_{o}{ }^{2}+2 F_{c}{ }^{2}\right) / 3 \\
&(\Delta / \sigma)_{\max }=0.001 \\
& \Delta \rho_{\max }=0.27 \mathrm{e} \AA^{-3} \\
& \Delta \rho_{\min }=-0.28 \mathrm{e} \AA^{-3}
\end{aligned}
$$

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.034$
$w R\left(F^{2}\right)=0.084$
$S=1.05$
1616 reflections
139 parameters
H atoms treated by a mixture of independent and constrained refinement

Table 1
Selected bond distances (\AA, ${ }^{\circ}$).

$\mathrm{Ni}-\mathrm{O} 1$	$2.0646(15)$	$\mathrm{O} 2-\mathrm{C} 11$	$1.263(3)$
$\mathrm{Ni}-\mathrm{O} 3$	$2.0984(18)$	$\mathrm{C} 11-\mathrm{C} 12$	$1.492(3)$
$\mathrm{Ni}-\mathrm{N} 3$	$2.0647(19)$	$\mathrm{C} 12-\mathrm{C} 12^{\mathrm{i}}$	$1.310(5)$
$\mathrm{O} 1-\mathrm{C} 11$	$1.257(3)$		

Symmetry code: (i) $-x,-y, 1-z$.

metal-organic papers

Table 2
Hydrogen-bonding geometry ($\AA,{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{N} 1-\mathrm{H} 1 \cdots \mathrm{O} 2^{\text {ii }}$	0.86	2.05	2.868 (3)	159
$\mathrm{O} 3-\mathrm{H} 3 A \cdots \mathrm{O} 2{ }^{\text {iii }}$	0.86 (5)	2.11 (5)	2.893 (3)	151 (5)
$\mathrm{O} 3-\mathrm{H} 3 \mathrm{~B} \cdots \mathrm{O} 2$	0.87 (5)	1.87 (5)	2.699 (3)	159 (5)

Symmetry codes: (ii) $1-x, 1-y, 2-z$; (iii) $-x, 1-y, 1-z$.

Water H atoms were located in a difference Fourier map and refined independently with fixed isotropic displacement parameters $U_{\text {iso }}=0.08 \AA^{2}$. Other H atoms were placed in calculated positions, with $\mathrm{C}-\mathrm{H}$ distances of $0.93 \AA$ and $\mathrm{N}-\mathrm{H}$ distances of $0.86 \AA$, and were refined in the riding mode, with $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}$ of the carrier atoms.

Data collection: PROCESS-AUTO (Rigaku, 1998); cell refinement: PROCESS-AUTO; data reduction: CrystalStructure (Rigaku/ MSC, 2002); program(s) used to solve structure: SIR-92 (Altomare et al., 1993); program(s) used to refine structure: SHELXL97 (Shel-
drick, 1997); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: $\operatorname{Win} G X$ (Farrugia, 1999).

The project was supported by the National Natural Science Foundation of China (29973036).

References

Altomare, A., Cascarano, G., Giacovazzo, C. \& Guagliardi, A. (1993). J. Appl. Cryst. 26, 343-350.
Chen, Z., Xu, D.-J., Li, Z.-Y., Wu, J.-Y. \& Chiang, M. Y. (2003). J. Coord. Chem. 56, 253-259.
Deisenhofer, J. \& Michel, H. (1989). EMBO J. 8, 2149-2170.
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
Liu, Y., Xu, D.-J., Lin, D.-D. \& Yin, K.-L. (2003). Acta Cryst. E59, m753-m755.
Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.
Rigaku (1998). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan.
Rigaku/MSC (2002). CrystalStructure. Version 3.00. Rigaku/MSC, 9009 New Trails Drive, The Woodlands, TX, USA 77381-5209, USA.
Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.

